
JOURNAL OF COMPUTATIONAL PHYSICS 79, 184-199 (1988) 

A Finite Element Code for the Simulation of 
One-Dimensional Vlasov Plasmas. I. Theory 

S. I. ZAKI AND L. R. T. GARDNER 

Department of Applied Mathematics and Computation, 
University of Wales, Bangor LL.57 2U W, Wales 

AND 

T. J. M. BOYD 

Department of Physics, University of Wales, Bangor LL57 2UW Wales 

Received March 20, 1987; revised November 9, 1987 

The Galerkin method is used to obtain a finite element solution to the Vlasov-Poisson 
equations over the two-dimensional (x, v) phase plane using bilinear element shape functions. 
A set of linear equations for updated values of the distribution function is obtained in which 
time-dependent and time-independent coefficients are separated to reduce the computation 
involved. The noise levels are low and the energy conservation good. The finite element 
approach offers certain advantages over alternative methods in applications to problems in 
plasma physics. In particular, the flexibility in using elements of different size allows problems 
in which regions of the plasma are characterized by often widely differing scale lengths to be 
treated efficiently. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Numerical solutions of the Vlasov-Poisson system of equations to address 
problems in plasma physics have become commonplace since the early attempts by 
Dawson, Knorr, and others more than twenty years ago [l, 21. Much attention has 
been given to finite difference methods [l-6] although waterbag models [7] have 
been widely used and with some success in view of their simplicity. In addition to 
these, transform [S, 61 and splitting [4] methods are important, too, the latter in 
particular being both eflicient and accurate for a range of problems. 

Correspondingly, less work has been done using finite element methods [S] even 
though these might be expected to possess advantages over the others for certain 
classes of problems. In particular, one would expect low noise levels and accurate 
energy conservation and, by using elements of varying size, hope to deal efficiently 
with those problems such as plasma sheaths where, within the sheath, parameters 
vary rapidly compared with their behaviour in the bulk plasma. On top of these 
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advantages the method is well suited to handling complicated boundaries which 
may arise in many practical applications. 

With this in mind we have developed and tested a finite element approach to t 
numerical solution of the Vlasov-Poisson system. We integrate the Vlasov eq~atiQ~ 
over phase space by a method that is second order in the time step. In Section 2 we 
present the normalized equation to be solved by the finite element method subject 
to the boundary conditions introduced in Section 3. A solution of Poiss 
equation is given in Section 4 and this is later used in Section 6 to reduce 
amount of computation required. The process of matrix assembly and storage is 
described in Section 5. Tests used to validate the numerical method outlined in this 
paper are detailed and discussed in Part II. 

2. A FINITE ELEMENT SOLUTION TO VLASOV'S EQUATION 

We begin by normalizing the single species one-dimensional Vlasov-Poisson 
system describing the physics of the plasma electrons 

af af e af 
at+" c7x-mE;i;=” 

aE 
ax= 

where f(x, v, t) is the electron distribution function, E is the electric field, and e and 
nz are the electron charge and mass, respectively. The charge density in the plasma 
is p(x, t) with electron density N,(x, t) = JYoo f( x, v, t) du, whereas the ions provide 
a uniform neutralizing background with (average) number density n,. The electron 
velocities v are selected from the Maxwellian distribution 

/(v)=J$-$-exp [--$I, 
Je e 

where V, = (IcTJm,)‘/* is the electron thermal velocity and T, is the electron 
temperature. The Debye length I, = (rcT,/4nn,, e*)l’* and the plasma frequency 
wp = (4nn,e2/m) ‘I* have been used to scale the quantities appearing in the Vlasov- 
Poisson system so as ‘to produce a non-dimensional set of equations. The spatial 
coordinate x has been normalized to i,, time t to l/o,, velocities to VJ =ADwJ4 
the electric field E to 47cn,;lo and the distribution function to N/Y,. ith this 
scaling the Vlasov-Poisson equations take the form 

g=l-lm fdv. 
-cc 
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We shall assume that the one-dimensional system is of length L and will allow 
velocities in the range (u( < ZI,,,. The computational domain is therefore a rectangle 
in the x, u phase plane bounded by the lines x = 0, x = L, u = + umaX. This region is 
to be divided into rectangular finite elements [9] and the distribution function will 
be represented by 

f’(x, u, t) = N’(x, u) f”(t) (3) 

for each element e, where N’(x, u) are the shape functions and P(t) the vector of 
nodal values for the element at time t. Substituting into (1) we obtain, for each 
element, 

(4) 

Using Galerkin’s method [9], with the shape function N’ as weight functions we 
find for each finite element of area R, 

where 

and 

K’g -I- L’f” + W(t) f’, 

K’=j N’=N’dxdv (6) 
& 

L’ = jRe NeT g u dx dv 

W(t) = -j 
R, 

WTgEe(t) dx du. 

The matrix M’, however, depends on time through the electric field E’ and so must 
be recalculated at each time step. A way of avoiding much of this computation will 
be discussed in Section 6. 

If all functions are expressed in normalized local coordinates (5, q) 0 $ <, v d 1 
with origin at the lower left hand corner (x,, q,) of an element of sides (a, b) we 
have, for bilinear interpolation over the element shown in Fig. 1 the shape functions 
II915 

WC, ?) = cc1 - Ml -f/h r(l - 03 txl --rL @I. 

The element matrices then become 

(9) 

rP=abjl j1WTNed5dq 
0 0 

L’=b jol j;WT!$(vo+bq)dtdq 



FINITE ELEMENT CODE I. THEORY 

FIG. 1. Normalized co-ordinates for a rectangular finite element with nodal points 1, 2, 3, and 4 
located at its corners. 

and 

1 1 
&f’= --a ss NeT aN’ E’ d< dq 

0 0 aq 

After assembling the contributions for all elements we obtain the set of ordinary 
differential equations 

Kf+Lf+M(t)f=o, (13) 

where K, L, M have been constructed from the element matrices K’, L”, and N”, 
respectively, and f is the total vector of nodal values for the distribution function. 

We now linearly interpolate the distribution function between two adjacent time 
levels n and n + 1 by writing the time variation of the distribution function as 

f=C(l-~),~l pfyI ; i 1 
where r is related to the time t by t=(n+r)dt with O<t< 1. ifferentiating with 
respect to t we obtain 

t=+,l) fnf;I . 
L 1 

Hence ( 13) can be written as 

-fn)+L[(l-z)fn+zfn+‘]-t-M(z)[(l-z)f”+zf~+’]=O. (15) 

The values of the parameter r = 0, 4, and 1 correspond respectively to forward, 



188 ZAKI, GARDNER, AND BOYD 

Crank-Nicholson, and backward difference shcemes. Setting z = $ and averaging f 
using 

f n + l/2 = ;(p + 1 + f”), 

(15) takes the form 

Instead of solving (16) as it stands, we solve an equivalent system of equations 
C9,lOl 

g (f”f l/2 -fy+Lf”+‘Lo (17) 

(18) 

The results of which will be an approximate solution for Eq. (16). Note that any 
solution which satisfies (17) and (18) will also satisfy (16), though the converse is 
not valid. 

Equations (17) and (18) can be written in an implicit form for f”+ l/2 and f”+’ as 

K -&p+w+- p+w 1 At ’ 

(19) 

(20) 

It is this system that we shall solve numerically. Various methods were tried, in the 
end we adopted Gauss-Seidel as being the most convenient. 

The present paper thus solves the free streaming equation in x and the 
acceleration equation in o separately by implicit difference schemes. The method is 
related to the splitting scheme proposed by Cheng and Know [4], who solved the 
split equations by an interpolation approach in which no time differencing was 
used. 

3. THE BOUNDARY CONDITIONS 

In many problems in plasma physics we wish to study phenomena over extensive 
regions of plasma. This is not usually possible numerically without making use of 
spatially periodic boundary conditions, and in the first instance we have followed 
this approach. In velocity space we must ensure that the region is wide enough to 
encompass all but a vanishingly small part of the distribution function at all times 
during the computer run. If this is satisfied we can set f = 0 at u = + u,,, . 
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-“In,, 

FIG. 2. An example of a phase plane divided into 30 elements with NHE = 5 and NVE = 6, under 
periodic boundary conditions in the x-direction. 

The boundary conditions just discussed are enforced by an appropriate node 
numbering scheme. This is illustrated in Fig. 2 where the plane has been divided 
into 30 elements with 5 in the x direction and 6 in the u direction. 

The periodic boundary condition is obtained by giving the nodes along the right- 
hand boundary the same numbers as those along the left. The f = 0 condition along 
the upper and lower boundaries is obtained by eliminating nodal variables fz6 to 
f$ from (13) and also dropping Eqs. (26)-(32) from the set of 31 equations that 
(13) represents. 

4. THE SOLUTION OF POISSON’S EQUATION 

We now turn our attention to setting up a numerical solution to Poisson’s 
equation in the form 

fk v, t) du, 

where the electric field E is a function of x and t only. 
Consider Fig. 2 and let us evaluate (2a) at a point x lying within 0 c x < a, i.e., 

within the first column of elements. Suppose now instead of there being 5 interval 
nodes along the v direction we have M. Then this first column of elements and their 
nodal numbers is illustrated in Fig. 3. 

In terms of (local) normalised coordinates (4, IJ) (2a) becomes, for a fixed point 5 
lying within the first column of elements, 

in column 1 
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M 2M 

M-l 2M-1 

M*ir2 

M*i+l 

M+ i 

M+2 

M*l 

FIG. 3. The first column of elements from Fig. 2. Local normalized coords (5~) vary O< r < 1, 
0 <q Q 1, over each element. The boundary nodes are shown but not numbered. 

The integration with respect to q then involves only the first column of elements, 
shown in Fig. 3. These elements have nodes numbered 1 to 2M. 

We now examine the contribution of the nodal point (i+ 1) to the integral. From 
Fig. 3 it is clear that the nodal point (i+ 1) contributes to the integration over the 
two elements e, and e2 in the following manner: over the element eI( 1 - <)[@+ 1] 
and over the element e2( 1 - <)[ 1 - 1-J f:+ 1. So the total contribution of the nodal 
value (i+ 1) to the integral is (1 -c)f;+,. The nodal value (M+ i + 1) contributes 
to the integral in Eq. (21) as follows: $@$+j+ 1 over the element e, and 
cc1 -m4+i+, over the element e2, so that the contribution of node (M + i + 1) 
in the q direction is u$ + i + 1. 

Now, since fi is zero on u = + u,,, only interior points contribute to the integral. 
Hence we can write the integral in (21) in the single form 

and then Poisson’s equation takes the form 

~$=l-b[(l-~)yf;+S ,‘y’ f!]. 
i=2 i=M+Z 

(23) 

Note that aE/a( is linear in r and independent of q and remember that it is valid, 
only, over a single strip of finite elements-the first column in Fig. 2. 
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Let us now integrate in the < (or x) direction to determine E. Integration over 
strip 1 leads to 

tlE(e)-E(o),=r-b[[S-tti]“~1fi+f5’ 2‘y fi 
i=2 i=M+2 

or simply at the right hand, where 5 = 1, 

Similarly, rewriting (23) for the 2nd strip and integrating with respect to 5 gives 

~[,,)-~(1)l=e-b[[r-~~2]~~~~,+~E2ii~~,I;] 

or at the right-hand node where < = 1 again 

Using (25) this gives 

Introducing the notation 

(I+ l)M- 1 

F(O)= 1 fi5 62V 
i=PM-2 

we have 

;(E(2)-E(O))=2+(O)+F(l)+;F(2) (28) 

Values of the electric field at grid points lying along the x-direction are 
determined once the value of E(O) is known. We shall use the condition cornrn~~~~ 

581/79/l-13 
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used in periodic electrostatic codes, that the average value of the electric field is 
zero. Hence summing over all grid points we have 

;[*flE(i)-nE(0)] 
i=O 

=n&?li-b[~(F(0)+F(l)) 

i=l 

++(i)+F(Z))+ ...~(F(n-2)+F(n-1))], (29) 

where n the total number of nodes in the x-direction. 
We now require that the average value of the electric field be zero, that is 

c;:,’ E(i) = 0 which can be used in (29) to determine E(0) through 

n-1 

E(o)=; 
i 

n-1 

,so E(i)-a c i+ab 
i=l [ 

+(O)+F(l)) 

++(l)+F(2))+ ... +;(F(rr-2)++1)) II (30) 

in terms of the known quantities I;(Z). 
Now that E(0) has been determined, we can evaluate the nodal values of the 

electric field, that is E(l), E(2), . . . . E(n - l), by substituting E(0) into (28). From 
(24) we can see that over each element the electric field varies quadratically in the 
x-direction. Therefore, if we seek to express this in finite element form we have three 
unknown parameters in each trial function which we will have to evaluate using 
three nodal variables for each element. For the rectangular element and an electric 
field which varies only in the x-direction we proceed by taking the electric field to 
be of the form 

E’(5) = Ml+ a*( + .3t2. 

It is convenient to replace the constants a,, CI~, a3 by nodal values of the electric 
field. Taking equally spaced nodes in the element at 5 = 0, 4, 1 so that the nodal 
values of the electric field are E,, E1,2, El produces a vector of nodal parameters 

in terms of which the electric field is 
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We need, therefore, to know the values of the electric field at the points 5 = 0, 5 = $? 
5 = 1 over each strip. For the first strip E, = E(O), E, = E( 1) have already been 
determined in (30) and (28) and we can use (24) to evaluate the third nodal 
parameter E,,z = E(q) as 

E(i)=E(O)+a ;-$(3F(O)+F(i)) 
L 

An extension of that equation enables us to determined the field at the midpoint of 
each strip as 

E[~]=E(i)+a[~--$(3F(i)+F(i+l)) , i=O, I,..., n. (32) 

An expression for the distribution of the electric field over each element, of the for 
(3 1 ), has therefore been set up. This will be used later to enable us to reduce the 
amount of computation required at each time step. 

5. THE ASSEMBLY PROCESS 

In this section we discuss how the differential equations governing the whole 
system are constructed from the element (5). We also describe devices by means of 
which core storage requirements may be reduced. Note that since the elements are 
laid out and numbered systematically (see Fig. 2), we do not in fact need to store 
the values Z, m, n, and k for each and every element because there is a relationship 
between these four values. If NV+ 1 is the number of nodes in the u direction, then 
for an interior element with nodal number I at its lower left-hand corner, the other 
three nodal numbers are given by 

m=Z+l 

n=l+(NV-1) 

k=n+l. 

Thus, once the value of 1 is prescribed, the values of m, n, and k are also known. 
In the assembly process, the elements 

where K’, L,, and Me are 4 x 4 matrices and f” is the 4 x 1 vector of nodal 
parameters, are combined together to give the differential equations which govern 
the whole system, viz, 

Kf+Lf+Mf=0, 
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where f is the Nx 1 vector of all nodal parameters and K, L, and M are N x N 
matrices. Suppose the rectangular element has nodes numbered (Z, m, n, k), then the 
typical element matrix S’ will have the form 

i 

Se(Z, I) Se(Z, m) F(l, 12) Se(Z, k) 
F(ml) ... 

. . . 1. 

Here S’ is used to represent the element matrices K’, L’, or M’. Now if S represents 
the assembled matrix for the whole structure then the relation between S and S’ 
will be 

where the sum is over all elements and S here represents the assembled form of 
K, L, or M. 

In Fig. 4, we illustrate the assembled matrix S and show in boxes the 
contributions made to it by the typical finite element (3, 16) (see Fig. 1). When 
contributions from all the elements are included, S takes the form shown in Fig. 4a, 
where the only non-zero matrix elements are shown as stars. One can see that the 
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FIG. 4. Position of the nonzero entries in the assembled matrix and, the associated block matrix 
Fig. 4a for a periodic plasma in the x-direction with a phase plane divided into 30 elements with 
NHE = 5 and NVE = 6. 



FINITEELEMENTCODEI. THEORY 195 

matrix S has some structure imposed on it by the node numbering scheme an 
boundary conditions. 

If the three matrices K, L, and M having this form are stored in memory without 
modifications, many unnecessary zero elements are included. For example, the 
matrix S in Fig. 4a includes 625 elements, of which 430 are zero. Storage can, 
however, be reduced if we are able to identify the indices of non-zero matrix 
elements, and so omit from core most of the zero matrix elements. The way t 
may be accomplished is shown schematically in Fig. 4’0. The diagonal lines shown 
in Fig. 4a are rotated until they are vertical and the matrix elements translated into 
the appropriate locations SB in Fig. 4b. The original relative vertical positioning of 
the matrix elments is retained. 

It is seen that the square stiffness matrix S of size (N x N) can in fact be replace 
by a rectangular array SB of size N x 9 thus saving an area of memory of size 
N x (N- 9) x 3, since S represents the 3 matrices K, L, and M. 

6. DERIVATION OF A TIME-INDEPENDENT MATRIX A4 

The matrix A4 in (13) is of course a function of time since it includes E(t). This 
implies that M’ must be recalculated and A4 reassembled at each time step and this 
is clearly undesirable. 

Ways of removing the time-dependent part of the electric field from the integ~and 
have been devised. This was achieved by using an expression for the electric field 
over a finite element in terms of its nodal values 

E’=(1-3{+2<2,4&4r2, -5+25’) (33) 

where 

and 

E=(l-3[+2<*,4&4t2, -5+2t2) 

is the vector which contains the nodal values of the electric field for the element 
of interest and so it is independent of t and q and can be taken outside any 
integration. So, using (33) in (12), we have for the element (ij) of matrix M’ 

M$= -aeT ETN; 
,aw 

- dl dq = -aeTik$, 
af7 
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where 

(37) 

is itself a (3 x 1) matrix, independent of time. From (36) it is clear that each element 
of the matrix M” has become the product of two matrices, one dependent on time, 
namely e, and the other A$, time independent. Now it is of interest to write the 
(12 x 4) matrix M’ as a combined form (as we did with its elements) such that the 
assembling process can be carried out independently of the time level: 

T aN; E,N; - - 
af7 

EIN; aN T -i awaw ’ aw 
aq 

&N;‘% E+--2 &p4T> 
aq ar h aq - 

For compatibility, we define e* as 

E, E,,, E, 0 0 0 0 0 0 0 0 O\ 
e* 0 0 0 E. E1,2 E, 0 0 0 0 = 

00000 0 Eo h/z E, 0 
0 0 0 0 0 0 0 0 0 E. 

so that e* is of size (4 x 12). 
From (36), (38), and (39) it is clear that 

where 
M’r -u(eTM;*)j,j=l ,___, 43 -ae*Me*, 
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and so N’ is a product of two matrices one of which e* is time dependent and M’* 
which is time independent. Now, since the matrix I@* is independent of time an 
also independent of the nodal values for the electric field, AP* will be the same for 
all the elements in the phase space for all time. 

Before proceeding further, let us study the relation between the element matrices 
and the nodal values for the electric field. Consider the example shown in Fi 
and notice that if we take the values of the electric field at the nodal points along 
the x-axis to be E,, E,, E,, . . . . E,, then the element matrices on the first strip (that 
is, the elements (1, l), (1,2), . . . . (1, NV)), where NV is the number of nodes in tke u 
direction, depend upon the nodal values E,, E1,2, and E, of the electric field, while 
tbe element matrices for the elements on the second strip (that is (2, 7), 
(2, g), . . . . (2,2NV)) depend upon the nodal values E,, E3,2, and E,, and so on for 
the rest of the strips. 

The contributions to the nodal point “14,” for example (see Fig. 2), depend 
those contributions from the surrounding elements, that is, the elements (2, 
(2, I1 ), (3, 16), and (3, 17). Two of these four elements he on strip two, that is, 
elements (2, 10) and (2, ll), while the others (3, 16) and (3, 17) lie on the third 
strip. Consequently we cannot simply sum the contributions to the nodal point “‘14” 
as in our previous assembly procedure, but have to find a new way of storing the 
contributions and at the same time be able to combine them with the appropriate 
nodal value of the electric field. To do so, let us assume that the rectangular 
element e has the nodal numbers (I, m, n, k) and rewrite the matrix W’ in the 
compact form 

MT’, M;rm MF”, iwg* 
Y&i;, Ki,m MZ,n XZ 

n,i Wz:m ME:,, %, 
M;;:, ME:,,, M;;:, W, 

where the elements are themselves 3 x 1 column vectors 

i, j = 1, m, n, k, 

the elements of which are given by 

so that M’“* is a brick matrix of size (4 x 4 x 3). 
The element matrices M$* are now assembled into the matrix M” as 

ML,,.+2 = c M;):p, i=I,m,n,k;j=I,m;P=l,2,3; 
e 

MTjl P = c MT,;,, i = I, m, n, k; j = n, k; P = 1,2, 3; 
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where I, wt, n, and k are the nodal numbers of the rectangular element “e.” M* is a 
brick array of size N x N x 5, where N is the total number of nodes. The matrix M * 
is independent of time and need be calculated only once. We now rearrange the 
nodal values of the electric field into a matrix of size N x 5 which on multiplication 
by M* produces the square matrix M. This matrix is 

/ EN-1 EN--~/I Eo 42 El\ 

Eo El/2 El 42 

& = 
El 42 E, 42 E, : : : - 

\ 

k-2 EN: I/Z 

EN-2 EN-,, 12 EN-1 EN-1,2 Eo 
I 

(47) 

Then 

(48) 

where 

q = 1, 2, . . . . 2NX, 

j = 1, 2, . . . . N 

i=(q-l)(NV-l)+l,...,q(NV-l), 

and NV, NX are the number of nodes in the v and x directions, respectively. We can 
easily reconstruct the time dependent matrix M, (13) by multiplying the time 
independent brick matrix M$p by the time dependent “matrix” of electric field 
values E. The “matrix” E is the only one that must now be recalculated at each time 
step and since E depends only on the nodal values of the electric field this is simply 
and speedily accomplished. 

To discuss the equality (48) and see what it means in real terms, suppose that q 
has the value 1; then, accordingly, i will take the values 1,2, . . . . (NV- l), while j 
has the values 1,2, 3, . . . . N. These values for i and j represent the first band of the 
matrix A4 shown in Fig. 4a. Indeed these elements are the result of contributions 
due to those elements lying on the first column of Fig. 2, and the elements on the 
right-hand top corner of M are of these elements which lie on the last right-hand 
column of Fig. 2. Therefore, as we discussed before, these contributions depend 
mainly on the values E( 1, P), P = 1,2, . . . . 5 of the electric field. If q has the value 2 
then i takes the values NV, . . . . 2(NV- 1 ), which represent the second band of the 
matrix M, Fig. 4a. As before, we notice that the elements on that band derive from 
contributions due to the elements of the first and second columns of Fig. 2. 
Therefore, these contributions depend mainly on the values ~(2, P), P= 1,2, . . . . 5 of 
the electric field. Proceeding in the same way for values of q and i, the matrix h4 is 
recovered. 
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In part II we apply the finite element scheme for solving the Vlasov equation 
outlined in this paper to a range of test problems to provide a comprebe~sive c 
on the accuracy of the method. 
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